Mimicking class Ib dimanganese ribonucleotide reductase

Lorna M. Doyle, 1 Adriana M. Magherusan, 1 Subhasree Khal, 2 Ang Zhou, 2 Erik R. Farquhar, 3 Brendan Twamley, 1 Lawrence Que, Jr., 2 Aidan R. McDonald 1

1 School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland; 2 Department of Chemistry and Centre for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA; 3 Case Western Reserve University Centre for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA.

Email: aidan.mcdonald@tcd.ie

A fascinating facet of ribonucleotide reductase’s (RNRs) Chemistry has been the identification of a dimanganese (Mn$_2$) active site in class Ib RNRs that requires superoxide anion (O$_2^-$), rather than dioxygen (O$_2$), to access a high-valent MnIIIMnIV oxidant via a MnIIMnIII-peroxide precursor (see scheme). We have prepared two Mn$^{II}_{2}$ complexes that, upon exposure to KO$_2$, yield MnIIMnIII-peroxide adducts. Activation of the MnIIMnIII-peroxide complexes either via thermal decay or acid-activation results in meta-stable MnIIIMnIV adducts. The MnIIMnIII-peroxide complexes displayed electronic absorption features typical of a Mn-peroxide species, and either a 29- or 22-line EPR signal typical of a MnIIMnIII entity. The MnIIMnIV adducts displayed electronic absorption features typical of a MnIIIMnIV species, and 16-line EPR signal typical of a MnIIMnIV entity. Electrospray ionisation mass spectrometry (ESI-MS) confirmed the elemental composition of the MnIIMnIII-peroxides and MnIIMnIV complexes. While the MnIIIMnIII-peroxides were unreactive towards weak O–H bonds (as those found in tyrosine), the MnIIIMnIV complexes were found to be efficient oxidants, capable of phenol O–H bond activation via ratelimiting electron transfer. Our findings provide comprehensive support for the postulated mechanism of O$_2$ activation at class Ib Mn$_2$ RNRs.

References: