Adventures with iron-sulfur cluster-containing regulators: elucidation of sensing mechanisms

N.E. Le Brun
Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
n.le-brun@uea.ac.uk

The ability to sense and respond to various key environmental cues is critical for the survival and adaptability of bacteria, including pathogens. The particular sensitivity of iron-sulfur (Fe-S) clusters has been exploited in nature through the evolution of multiple sensor-regulator proteins that utilise an iron-sulfur (Fe-S) cluster as their sensory module. Upon detection of their particular analyte (via some kind of chemistry involving the cluster), they coordinate a global transcriptional response. The fragility and sensitivity of these Fe-S clusters makes studying such proteins difficult, and gaining insight of what they sense, and how the sense it and then transduce the signal to affect transcription, is a major challenge. Trying to understand how bacteria sense O₂ and iron levels1,2, and the advent of oxidative or nitrosative stress3-5, has been a major focus of my research group for nearly 20 years. Here, I will discuss some of the highly elegant sensing mechanisms employed by Fe-S cluster-containing regulators, along with some of the novel biophysical approaches6 we have used to gain structural and functional insight. These highlight a remarkable variety in the way that nature has evolved to utilize these ubiquitous protein cofactors.

References:
2 Pellicer Martinez et al., (2019) eLife. \textbf{8}, e47804
5 Volbeda et al., (2017) Nat. Commun. \textbf{8}, 15052
6 Crack and Le Brun (2021) Coord. Chem. Rev. \textbf{448}, 214171