Bio-Inspired Synthesis of Ring Compounds using Metalloradical Catalysis

Bas de Bruin*

Homogeneous Catalysis Group, van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam. E-mail: b.debruin@uva.nl

Radicals are intrinsically reactive, and were long believed to be too reactive to be selective. However, in the coordination sphere of transition metals highly selective radical-type processes are certainly possible. In fact, radical-type reactions are tremendously important in several bi-synthetic pathways mediated by metallo-enzymes.

Inspired by such intriguing catalytic radical-type transformations mediated by metallo-enzymes, we are currently investigating new catalytic transformations mediated by synthetic (open-shell) organometallic catalysts. Special interest in such open-shell organometallic species comes from their expected higher and different reactivity compared to their closed-shell counterparts, and these ‘metallo-radical complexes’ may well allow us to steer and control radical-type reactions.[1]

In this contribution the available bio-inspired tools to steer and control the reactivity of cobalt(II) metalloradicals are discussed. In several cases, this metal triggers the formation of ‘substrate radicals’ in the coordination sphere of the metal, which are key intermediates in a variety of new catalytic radical-type transformations.[1-6] This presentation is focused on the application of cobalt(II) in catalytic reactions involving ‘carbene radicals’.[2-5] Reactivity studies, EPR spectroscopy and complementary DFT calculations are used to unravel the open-shell pathways of the paramagnetic Co" species.[7]