Inhibition by CN⁻ provides insight into the catalytic mechanism of [FeFe] hydrogenases

<u>Maria Alessandra Martini</u>,^a Konstantin Bikbaev,^{bc} Patricia Rodríguez-Maciá,^d Serena DeBeer,^a Ingrid Span,^{bc} James A. Birrell^a

^a Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany

^b Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

^c Department of Chemistry and Pharmacy, Bioinorganic Chemistry, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany

^d Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK

maria.martini@cec.mpg.de

[FeFe] hydrogenases are highly active enzymes that catalyze the interconversion of protons and electrons with molecular hydrogen. The cofactor at the active site (the H-cluster) is composed by a canonical [4Fe-4S] cluster ([4Fe-4S]_H) linked to a unique di-iron subcluster ([2Fe]_H) by a cysteine. In $[2Fe]_{H}$ the two Fe ions are further coordinated by a bridging 2-azapropane-1,3-dithiolate (ADT) ligand, three CO (one bridging) and two CN⁻ ligands, leaving an open coordination site on one Fe where H₂ activation or formation occurs. The strong-field CO and CN⁻ ligands are thought to stabilize low-valent, low-spin Fe(II) and Fe(I) oxidation states in [2Fe]_H e.g. Fe(II)Fe(I) in the active oxidized (H_{ox}) state. Conversion to the reduced Fe(I)Fe(I) state is triggered by protonation of the ADT ligand, meanwhile the overoxidized Fe(II)Fe(II) state is observed in the crucial iron-hydride containing H_{hvd} state. Additionally, two oxygen-stable forms of the H-cluster with an overoxidized [2Fe]_H, called H_{trans} and H_{inact}, can be generated by binding of exogenous sulfide at the open site of [2Fe]_H under oxidizing conditions. Here, we investigate H_{trans}-like and H_{inact}-like states that accumulate in [FeFe] hydrogenase mutants where the cysteine in the proton-transfer pathway leading to and from the active site is mutated to alanine. Our data suggest that in these two states a third CN ligand is bound to the apical position of [2Fe]_H. These states can be generated both by "cannibalization" of CN⁻ from damaged [2Fe]_H subclusters as well as by addition of exogenous KCN. To our knowledge this is the first reported interaction of exogenous CN with [FeFe] hydrogenases. Similar CN-bound states can also be generated in wild-type hydrogenases, but do not form as readily as with the Cys \rightarrow Ala mutants. These results help us to understand how the fine balance between charge, σ -donation and π -backdonation contributions from the strong-field ligands CO and CN⁻ affect the electronic structure of the H-cluster, and we discuss the implications for catalysis.